função hiperbólica - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

função hiperbólica - перевод на русский

Funções hiperbólicas

função hiperbólica         
мат. гиперболическая функция
função hiperbólica         
- (матем.) гиперболическая функция
função de densidade         
- (физ.) функция плотности (распределения вероятностей)

Определение

sobrejeção
sf (sobre4+ejeção) Mat Função sobrejetora; correspondência de um conjunto sobre outro.

Википедия

Função hiperbólica

Na matemática, funções hiperbólicas são funções análogas às funções trigonométricas ordinárias, estas também conhecidas como funções circulares. Funções hiperbólicas foram introduzidas por volta de 1760 de maneira independente pelos matemáticos Vincenzo Riccati e Johann Heinrich Lambert. As funções hiperbólicas básicas são o seno hiperbólico e o cosseno hiperbólico, dos quais são derivados a tangente hiperbólica, a cossecante hiperbólica ou a secante hiperbólica e a cotangente hiperbólica, análogas às funções trigonométricas derivadas. Em alguns casos, suas inversas também são consideradas funções hiperbólicas.

Essa classe de funções recebe esse nome porque, em muitos casos nos quais o uso de funções trigonométricas gera círculos ou elipses, o uso de funções hiperbólicas gera hipérboles, como, por exemplo, no caso das equações paramétricas:

x = cos t {\displaystyle x=\cos t\,}
y = sin t {\displaystyle y=\sin t\,}

Estas geram um círculo, enquanto que as equações:

x = cosh t {\displaystyle x=\cosh t\,}
y = sinh t {\displaystyle y=\sinh t\,}

geram (uma metade de) uma hipérbole.

Funções hiperbólicas aparecem nas soluções de várias equações diferenciais lineares, nas soluções de algumas equações cúbicas, em cálculos de ângulos e distâncias na geometria hiperbólica e em cálculos da Equação de Laplace em coordenadas cartesianas. Equações de Laplace são importantes em diversas áreas da física, incluindo eletromagnetismo, transferência de calor, hidrodinâmica e relatividade restrita.

Na análise complexa, as funções hiperbólicas surgem como as partes imaginárias das funções trigonométricas seno e cosseno. Quando são consideradas como definidas por uma variável complexa, as funções hiperbólicas são funções racionais de exponenciais e, portanto, holomórficas.